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SUMMARY

A mathematical model of the Sikorsky £H~-3G helicopter based on classical non-
linear, "quasi-steady" rotor theory has been developed 11 NASA Ames Research Center.
The model has been validated statically and dynamically by comparison with Navy
flight~test data. The model incorporates ad hoc revisions which address the ldeal
assumptions of classical rotor theory and improve the static trim characteristics to
provide a more realistic simulation, while retaining the simplicity of the classical
model.

INTRODUCTION

The Guidance and Navigation Branch at Ames Research Center is conducting research
to improve helicopter IFR operations at remote sites and at high-density traffic
areas. Much of the research is accomplished using a Sikorsky SH-3G helicopter (see
fig. 1) to evaluate advanced guidance.and navigation concepts. Prior to flight test,
new concepts are developed on an off-line simulation or using a real-time piloted
simulation. A requirement, then, exists to develop and validate an off-line math
model of the SH-3G which can be adapted for real-time simulation.

In recent years, NASA has developed several simulations of Sikorsky aircraft.
In 1979, J. D. Shaughnessy of Langley Research Center developed a math model of the
Sikorsky CH-54 helicopter for sling-load research (ref. 1). The rotor models used
were based largely on an NACA report by F. J. Bailey (ref. 2), who related rotor per-
formance to only three varying parameters: the inflow ratio, the tip-speed ratio, and
the rotor pitch. However, Bailey assumed uniform downwash which leads to underesti-
mating the induced power by approximately 11% in hover, and 17% in high forward flight
(ref. 3, p. 140). In 1980, Sturgeon and Phillips (NASA Ames) modified Shaughnessy's
model to simulate the Sikorsky CH-53 (ref. 4).

This paper documents a mathematical model of the SH-3G helicopter which was
developed by modifying and adding to the existing CH-53 helicopter math model at
Ames, and validated by matching flight data. The present model differs from the
CH-54 and CH-53 models in that actual static performance as measured in flight test
(ref. 5) is more closely matched by addressing the assumptions of uniform downwash,
two-dimensional, blade 1ift curve slope, and fuselage flat-plate area as measured in
the wind tunnel. In addition, the fuselage aerodynamics, equations of motion, and
engine model are simplified. An improved trimming algorithm has also been implemented.

Like the CH-53 math model, the SH-3G math model calculates nonlinear rotor aero-
dynamics based on the "quasi-steady' assumption, i.e., there are no unsteady aerody-
namic effects between time steps. The fuselage aerodynamics have been linecarized as
much as possible and the eugine and associated governor are modeled by a simple trans-
fer function between the main-rotor rpm deviation from nominal and tne engine torque.
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Figure 1.- NASA SH-3G research helicopter.

MATHEMATICAL MODEL

The SH-3G math model consists of eight submodels: the equations of motion, the
atmospheric model, the wind, the fuselage aerodynamics, the main rotor, the tail
rotor, the engine, and the control system and rigging. A description of the
coordinate systems used throughout, a general description of all the submodels, and

a detailed description of each submodel follow.

Coordinate Systems

1. Earth axes, subscript e: Origin fixed on the earth's surface, x axis
pointing north, y axis pointing east, and 2 axis pointing down into the earth.
This coordinate system rotates with the earth with the 2z axis always pointing

toward the earth's center.

2. Path axes, subscript p: Origin at the center of gravity of the helicopter,
x axis pointing along the earth relative veloc?!ty vector, y axis pointing perpen-
dicular to the right of the earth relative velocity vector and parallel to the ground,
z axis pointing down and perpendicular to the earth relative velocity vector (see

fig. 2).
3. Body axes, subscript b: Origin at the center of gravity of the helicopter,

x axis pointing out the nose of the helicopter, y axis pointing to the right perpen-
dicular to the plane of symmetry, and 2z axls down in the plane of symmetry (see

fig. 3).
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4. Shaft axes, subscript s:
Origin at the rotor hub, x axis
rotated about the y body axis through
the longitudinal shaft tilt angle, 6g,
y axils rotated about the new shaft x
axis through the lateral shaft tilt

2)

ALONG THE EARTH
~ ~ RELATIVE-VELOCITY

VECTOR
angle, ¢4, and 2z axis down and paral-
lel to the shaft (see fig. 4).
5. Control axes, subscript c: >E

Origin at the rotor hub, x axis point-
ing toward the relative wind parallel
to the swashplate, y axis pointing to
the right parallel to the swashplate
(perpendicular to the relative wind),
and 2z axis down and perpendicular to
the swashplate (see fig. 5).

6. Wind axes, subscript w:
Origin at the center of gravity of the Y
helicopter, x axis pointing into the
relative wind, y axis rotated about
the 2z axis by the sideslip angle, 8, Figure 2.~ Path axes.
and z axis rotated about the vy
wind axis by the angle of attack, u
(see fig. 6).

N

General Model Description

The SH-3G helicopter simulation
contains the following submodels:

1. Equations of motion: This
submodel calculates the position,
velocity, acceleration, attitude,
angular velocity, and angular accelera-
tion from the forces and moments pro-
vided from other submodels.

2. Atmospheric model: Atmosphere
pressure, temperature, density, and
dynamic pressure are calculated from L
the 1962 standard atmosphere. \

3. Wind model: Turbulence and Figure 3.- Body axes.
steady-wind components are generated
in this submodel. The random turbulence conforms to the Dryden spectral model.

4. Fuselage aerodynamics model: The fuselage aerodynamics model determines the
1ift, drag, and side forces, as well as the pitching, rolling, and yawing moments as
functions of the fuselage angle of attack, the fuseclage sideslip angle, and the
dynamic pressure. In the interest of simplicity, the functions are all linear or
polynomial functions of sinusolds.




Y

X
§s
ALONG THE
HELICOPTER
ROTOR SHAFT
>y
/ <
/ Vs
/
s
___/ O
g
Yz
Figure 4.- Shaft axes.
>y

Figure 6.- Wind axes.

8. Control system and rigging model:
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Figure 5.~ Control axes.

5. Main-rotor model: This submodel
determines the nonlinear thrust, drag,
side forces, and hub moments assuming
quasi~steady dynamics. The model accounts
for variable inflow ratio, variable rotor
speed, blade twist, tip loss, blade
coning, blade flapping, flapping-hinge
offset, nonuniform blade loading, and
profile drag due to spanwise flow.

6. Tail rotor modei: This submodel
is the same as the main-rotor model except
that a &, hinge (detailed description
in a later section) is accounted for,
there are no commanded cyclic-flapping
angles, and initialization of the inflow
ratio requires a more complicated itera-
tive process.

7. Engine model: The engine is
modeled as a torque-producing device act-
ing on a pure inertia. The engine
governor is a proportional plus integral
controller.

Transfer functions between the pilot's

cyclic stick, collective stick, and rudder pedals to the main-rotor collective pitch,
cyclic swashplate angles, and tail rotor collective pitch are modeled. The SH-3G ASE
(automatic stabilization equipment) and barometric altitude hold are modeled.

The relationships between the various submodels are illustrated in figure 7.

[PV S DU
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Figure 7.~ SH-3G math model block diagram.

Equations of Motion

The SH-3G equations of motion are a simplified version of SMART, a standard sub-
routine for simulation at Ames and documented i. reference 6. SMART converts forces

and moments from body axes to earth axes, integrates in earth coordinates to deter- \
mine the carth relative velocity and position and converts the velocities back to body
axes.

1

The SH-3G version of SMART deletes the small earth Coriolis effects and uses
cquations for the standard atmosphere instead of a table. A more convenient initial-
ization has also been implemented (see appendix A).

The body-axis forces generated in the fuselage aerodynamics model, the main-rotor
model, and the tail-rotor model are summed to produce the total body~axis forces
ey acting on the helicopter.

The total bodyv-axis forces are related to the earth-axis forces by the familiar
Fuler angle rotations:

!
!
1.
h
!
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The trigonometric functions "sine" and "eosine" will be abbreviated "S" and "C"
throughout this paper.

Solving for the earth relative forces:

Fy COCY  S6SOCH - CoSy  CpSHCY + S¢Sy F
P | = |cosy  Ses08y + CoCy Cosusy - SeCy| = | F, (2)
F -8 S$Co C4CH F,

If we neglect the earth Coriolis accelerations, but keep the earth centripetal
accelerations, we find the earth's relative accelerations to be:

Y 2

Vg Fy Rgorg C(LAT)S (LAT)

; -1 ‘ -

Ve 1= 5 Fg 0 (3)
Y 4 1) f 2 2

2 Fy + F Rgg C (LAT)

where Fg is the gravitational force equal to the weight of the alrcraft, m is the
mass of the aircraft, Rg 1is the radius of the earth, and e 1s the rate of angular
rotation of the earth. The aircraft velocity magnitude relative to the earth has
been neglected compared to the inertial velocity due to the earth's rotation.

The earth relative velocities are found by integrating the earth relative accel-
erations. A second-order Adams-Bashford predictor algorithm for integrating is used
(as in ref. 6) yiclding:

Vy Vy Vy Vy
o . DT
Ve =l vy | |3~ Vi | - Vg x5 (4)
v \ v Y
b n+1 D n L D n D n—:-

where DT is the integration time step, n 1is the present value, (n-1) 1s the pre-
vious value, and (n+l) is the next value.

Q

e e
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S The flightpath angles can now be found from thelr de

Vi
Yy < arcsin "y H ~I S Yy <o v -0

finitions:

(5)

—_—

Vi 1 T
P vt —_ . —_ - & —_— A

ative velocity vector. By transforming

where V is the magnitude of the earth rel
{cal coordinates, the latitude and longi-

the earth relative velocity vector to spher
tude rates become:

LON = VN/Re
. (6)
LAT = VF/[Re x C(LAT))
Earth location is now found by numerical integration using a modified Euler
method:
LON LON LON LON ]
. ., i DT

LAT = | LAT | + LAT |+ | LAT N (7)
ALT 1 ALT 0 -VD —VD

where ALT 1is the altitude above sea level.

The velocity with respect to the air in earth coordinates can be calculated from

the vector equation:

Vay Vy Wy
V“E = VE - WE (8)
V“D VD ND

the same BEuler transformation as in

To transform to body coordinates, use
equation (1):

¢ Uh V”N
Vi )T T¢TUT; Vay (9)
y wb v“l)
| The angle of attack, o, and sidestip angle, @, can now be found from their
definitions:

@

IR ST
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]

W W
. . by, -1 n
arctan | 5} 3 Feusy

\ "’)
) (10)

K
>
1

:. : + arcsin [--XE-—~]' -m < B s
. Va sign(Ub)

L&

where Vy = JU7 + Vi + Wi, the magnitude of the air velocit and |Uy| ~ 0.
b b 3 y b

-

If the x-z planc is a plane of symmetry, the body-axis..angular accelerations
(from ref. 6) are:

~
'y
oy
b=
i

= P (C,R + C,P)Q c, 0 ¢, |/L
% g | =|cre + c (R - P +}0  C; O M (11)
; R (C4P + C4R)Q c“% 0 Cy.l\N
Ei where L, M, and N are the total body axis moments generated by the rotor models and
:f the fuselage aerodynamics and C, + . . Cyp are inertial coefficients as follows:
J Co = Uyxlyz ~ ;z)_l 1
. Cp = Col(Tyy = 1,015, - 12,
; €, = COIxz(Ixx T yy + Izz)
Cy =Col,
C, = Col,
Cy = Cy(I, = I ) 'l (12)
Ce = Cyl,
S
Ca = CO[(Ixx Loy XX * I;z]
Cy = Coly, Uyy = 1y - xx
Cy: = Col o

where Ixxs Lyys lzzs and 1., are body axis moments of inertia.

o Integrating the body angular accelerations using the second-order Adams~-Bashford

predictor algorithm yields the body-axis angular velocities:

-

A
<
p
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Q =l )+l3xla])-{aq « 5t (13)
R n+a R'n k n R n-2.
The body axis acceleration vector 1s (see ref. 6):
o, 0 -R Q U, Vy
Vo 1= R 0 -p vo 1+ E¢T01w Vg (14)
Wy \(Q p 0 Wy vy

Neglecting the earth's angular velocity (7.2722%E-5 rad/sec), the Euler angular
accelerations are:

v (Q S¢ + R Co)/CO
6 | = QC¢ - R S¢ (15)
6 P+ ¢ SO

Integrating the Euler angular accelerations using t¥: modified Euler ~lgurithm:

Y iy & L
0 = o |+ 6 |+ o x %T- (16)
¢ n+1 ¢ n ¢ n ¢ n-1

Atmospheric Model

The pressure, temperature, and density of the atmosphc e have important effects
on the aerodynamics of any aircraft.

Since helicopters operate well below the speed of sound, conditions can be
assumed subsonic. Most helicopters also operate in the troposphere (below 36,089 ft
in the 1962 standard atmosphere) so for this case the atmosphere can be modeled by
just two equations:

3
o
[}

1 - 6.875 E-6 x ALT
5,256 (17)

la~i
n
—3
o

where Tar and Par are the temperature and pressure ratios relative to standard

sca-level values and ALT is the altitude above see level in feet.

For a diatomic gas such as air, the total temperature and pressure ratios are
given by:

L ma .

i e ke
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T, =1 4 0.2 M
(18)
— 3 e b
Pp= Ty ’
where M 1s the Mach number.
The ambient conditions are now found as:
L= AT R Ty kT }
= P )
Po= Py %P
( (19)
p = P/(T % 3088.8) (P in psf, T in Kelvin)
Veound = 65-76 /T (T in Kelvin)

where Tgrq and Pgtd are the standard sea-level values of pressure {(2116.2 psf) and
temperature (288.16 K).

The total pressure and temperature can now be found from equation (18):

Ttot = Tr % T
(20)
P =P %P
tot r
The compressible and incompressible dynamic pressures are:
q = 0.5 pV3
(21)
9@ = Peor ~ F
Finally, the equivalent and calibrated airspeeds:
= 8l ! *
Veq P7Pstd Va
(22)

WY

1/5{[1 + (qC/PStAd)]0.2857 - 1}

Y
cal sound

Wind Model

The wind model jinclvdes steady winds and turbulence conforming to the Dryden
spectral model. The wind is assumed to be a frozen field of turbulence drifting at a
mean wind speed relative to the earth. The turbulence is defined by a characteristic
high-frequency cutoff wavelength and a standard deviation .hich is a function of
altitude and intensity category, i.e., light, moderate. The cutoff wavelength is
determined by the rotor diameter, as the rotor is assumed to be completely engulfed
by each change in the wind from time step to time step. With this assumpticn the
turbulence is gencrated by simply adding a random component to the velocity vector in
body axes, rather than an claborate integration across the rotor disc.

10
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The changes in the veloeldty vector enter the force~ and moment-generation sub-
routines and affect the accelerations of the helicopter model. Angular accclerations
are simulated by simply adding random increments (conforming to the Dryden model) to
the angular veloclty components,

All random turbulence effects are removed during trim; however, the mean wind is
included. The random velocity changes as a result of turbulence would make it
Impossible to trim.

The wind model used in the SH~3G simulation is identical to that of SMART (see
ref. 6). A background description can also be found in reference 7.

Fuselage Aerodynamics

The fuselage aerodynamic forces and moments are presented as functions of the
angle of attack, sideslip angle, and dynamic pressure. The forces and moments are
first presented in coefficient form as functions of the two aerodynamic angles. The
coefficients are then multiplied by the dynamic pressure and transformed to body axes.

Data for the fuselage aerodynamics model are taken from two sources: a trainer
math model of the SH-3H (ref. 8) and a Sikorsky Engineering Report (ref. 9), both
prepared under Navy contract. Reference 8 contains equations for the various forces
and moments and reference 9 contains actual wind-tunnel test data.

The fuselage aerodynamics submodel has been greatly simplified from the CH-53
subroutine on which it is based. The philosophy has been to use linear or trigonomet-
ric functions to approximate the wind-~tunnel data when simple equations are not
already available. Model accuracy is maintained for small values of the angle of
attack and sideslip angle, but no attempt is made to fit the data exactly for large
angles. The large angles are, generally, only possible at low airspeeds which means
small fuselage forces and moments compared to the rotor aerodynamics. Further
sophistication of the model for large aerc'ynamic angles is therefore not justified.

Fuselage damping moments have also been neglected. This does not substantially
harm the fidelity of the simulation because the simulation will almost always be used
with the automatic control system on to compensate for the lack of natural damping.

The first parameter to calculate is the effective angle of attack of the fuselage
accouitting for the main rotor downwash. This local angle of attack is only used in

finding the fuselage acrodynamics. The rotor downwash factor (from the CH-53 model)
is:
e = c,rm/zf,ff}]_ntﬁ‘?n; (23)

where CTm is the main-rotor thrust coefficient, \; is the main rotor inflow ratio,

and yp is the main rotor tip-speed ratio.

The fuselage local angle of attack is:
U'Q = - emekf (24)

where S is taken as 0.5 from reference 9.

1
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The following force and moment coeffilclents, in fusclage wind axes, have the
dimensions of square feet. The aerodynamic angles are in degrees.

The side-force coefficient is an approximation to wind~-tunnel test data from
reference 9:

Cpy = -76 |8] < 50
(25)

= -350 sign(B) |B] > 50

o The lift-force coefficient is a strong function of beth the angle of attack and :
‘L the sideslip angle. The angle of attack component is taken from the Navy trainer

< model (ref. 8): i
T C, =10+ 410 8(a)) (26) \
' 11 : j
. The lifi~-force coefficient, as a result of sideslip, is a linear approximation 3

of wind-tunnel data from reference 9:

cg = -4 |8l 8] < 10 |
L2
= ~40 10 < |B] < 40
> 27)
= ~7.6 x |B| + 344 40 < |B| < 65
= =150 |8] 2 65 )

%7"§ The drag-force coefficient is also a strong function of both angle of attack and
o sideslip angle. The angle-of-attack component is again taken from the Navy trainer

o model (ref. 8):

CF

C *+ 324 sz(a2 + 2) (28)
D1 Lo

The flat plate area, CFDo’ was determined ad hoc by matching the torque at

Efi\ 90 knots. The value finally used was 44 square feet. §

The drag force coefficient because of sideslip is a sinusoidal approximation to {
Sikorsky wind-tunnel data from reference 9: 1
Cp = 500 87(B) (297
D2

The following moment coefficients are with respect to body axes and have dimen-
sions of cubic fect. They are all approximations to Sikorsky wind-tunnel test data
from reference 9, except for the pitching moment due to angle of attack which is from

the Navy trainer model.

The rolling moment due *o sideslip is given by:

'

CM. = ~4.5 & el « 2o]
(30)

-90 sign(f) IR] 2 20

14
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The pitching-moment coefficfent has two components: one from angle of attack

and another from sideslip. The component due to angle of attack is given by:
Cy = 170 - 1950 S(up) (31) ,
mi ' !
|
"The component due to sideslip is d
Cy = -175 84 x [8]) (32)

m2 y
|
i

The yawing moment due to sideslip is given by

Cy = -400 S(4.5 B) |3] < 40 : |

- n i)
= 80(8 - 40 sign(B)] 40 = [B] < 90 (33) i

- = 4000 &% sign(R) 8] = 90 ‘

The fuselage forces are found by multiplying the force coefficients by the
dynamic pressure which is given by i

] q = 0.5 oV, (34)
The forces are then given by:
Y =CL q l
FY
L = <CF + Cp )q | (35)
L1 L2
i p=[c. +cC. )q
. < "ps FD?) /
In wind axes:
13 ~D
a
X §
Fa = Y (36)
y
> - {
1;17 Lf |
: v !

g ¢ 0o v (37)
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The fuselage moments, in body axes, arce found by multiplying the dynamle pressure
times the moment coefficients.

t =0y W

Ay M,

la = CM + CM )q y (38)
m ml m2

Ta = Cm q
n n }

Main-Rotor Model

The main-rotor model is adapted from the CH-33 version (see ref. 4), which is a
classical nonlinear Bailey model assuming uniform inflow. An empirical method to
account for nonuniform inflow using flight-test data has been included in the SH-3G

rotor models.

The main-rotor and tail-rotor models are based on the following assumptions:

. Compressibility and stall effects can be neglected.
Lag effects can be neglected.
Only the first harmonic motion of the rotor blades is important.

Blade coning and flapping angles are quasi-static.
. Any wind or turbulence emerses the entire rotor disk at once.

[, B SR OO SO B
o o e

The following discussion is paraphrased from reference 4 (for completeness) with
the exception of the torque equation.

The airspeed of the entire rotor disc is assumed to be that of the rotor hub.
The airspeed at the rotor hub is calculated in shaft axes using the helicopter
airspeed and angular velocity.

Uy { Co, 0 ~$0, U, 0 2, Yp|[f P
VS = lSOSS¢S C¢S COSS¢S Vb + ~Zy 0 Xh i Q (39)
W ‘sosc(bs -6, C0Co | \ W, v, %, O ] R

where 'y 1is the shaft pitch angle; ¢g 1s the shaft roll angle; Xps Yp» 2y are the

hub coordinates in body axes; and U, Vi, and Wy are the body-axis velocities.

The airspeed at the hub is transferred into control axes using the rotor orien-

tation angle:
Vs + Alsws
8= arctan(mr (40)
] 8 8

which is obtained using the definition of control axes: V. = 0.

Using small anyle approximations for the main rotor cyclic control inputs
(swashplate angles), A and B,
1y g

14
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Us CRL 8B By CRH Ay SB AU,
Vo J= -8B CrL o AL CRL - By SRV (41)
We “Big Ay ! ws

The Bailey method requires three parameters on each iteration: tip-speed rattlo,
inflow ratio, and the rotor pitch. The tip-speed and inflow ratios arc defined as:

o= U /0R
(42)
V= Wo/OR - v

where W 1is the angular velocity of the rotor, R 1is the blade radius, and v is
the {induced inflow ratio.

The induced inflow ratio, v, is found by filtering the steady-state value, an
idea first used by Schaughnessy (ref. 1). The resulting first-order, nonlinear
differential equation is more stable numerically than algebraic calculations.

Co
=L (——5-‘—— - ) (43)
l\. ‘/"‘;‘ PR

The thrust coefficient is Cp and 1, 1is an empirical time constant teo simulate
the lag associated with {nflow changes.

The rotor thrust coefficient, Cp, and the coning angle a, (sece fig. 8) are cal-
culated by equations from ref. 4. These equations are simplified versions of those
found in Bailey's NACA report (ref. 2).

: Q4 T b 1 3 1 N 4 3 | G | IR

(".l‘ =T [(‘2 13 +/; 11)\ +(~3 B +-§Bu T u)un +(Z B +ZB “)n‘]
ay = g+ 0.04 w')\ + SIYED PNV GLERFE R B RN I

a 0 =y () . Y] 1 L o 10 12 u 1

where o s the solidity ratio, y is a blade mass constant, B is the tip loss
factor, ¢, is the rotor pitch, 0, is the rotor twist, and a is the blade-1ift
curve slope.  The blade-141t curve slope is usually taken as 5.73/rad based on two-
dimensional, wind-tunnel data and the resulting thrust coefficient is usually opti-
mistic. For the present simulation, the blade-iift curve slope was determined
empirically by decreasing its value until the simalation collective stick posttion in
hover, matched flight-test data trom reference 5. The final value was 5.2/rad.

(44)
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The caleulation of the rotor flapping angles (see tig. 9) requires the fuselage
angutar velocity i1 control axes.  This requires the followiug two transformations:
from body to shatt axes and trom shatt to control axes.
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Figure 8.- Coning angle.
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/
b/ | The flapping angles a, and b, are calculated
o in control axes by formulas from reference 1:
a
e
4 1 8 Pc 16Qc 1
a, = ———5" 2X + 5 6 Bt = -
- 1 1 _ U‘ 3 0.75 Q B“YQ
¥ 2B?
3
Figure 9.~ Flapping angles. . (4 Q 16PC) (46)
b, = |2 pa, - = -
1 |- 2 \3 0 Q BYvq
2B /

where 9, ,, 1s the blade pitch at 75% of the rotor radius, i.e.,

A =0 4+ 0,75 0

C.75 0 1

The rotor drag force in wind axes is given by:
H = T*a'

where a' represents a lift-induced, tilt back angle of the rotor thrust vector and
is given by (ref. 1):
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24Q 0.29 0, ,,
atw —tAov+ 8o Y- 51 - —2 (47)
|- M 3078 B" Y0 Cop
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The Q. term accounts for fuselage pitch rate.

The torque equation is taken from page 151, equation (5.27a) in reference 3:

_ 80 2 -\ - 1
Cq =3 (1 + sz x 3u°) + CT(Knuv A ua') (48)

where Kg, 1s a constant to approximately account for spanwise flow in forward flight,
K,, similarly accounts for nonuniform inflow, and & is the blade profile drag
coefficient Kgy and Ky, were determined as follows:

sw 1.57 (attributed to Stepniewsky in ref. 3, p. 151)

0.15 (empirically determined by matching the simulation torque in

nu hover to flight-test data from ref. 5)

The Bailey report (ref. 2) gives ¢§ as:

§ = 8 + 8o+ 8,07 (49)

where v, = 6Ct/(va) which is the average blade angle of attack in hover. For the
NACA 0012 airfoil and calculated from reference 10 &, = 0.0078, §, = ~-0.0090, and
§. = 0.2987.

The torque is calculated from the definition of torque coefficient as:

c
Q, = beR?p (R1)? —3 (50)

(o]
where b 1is the number of blades and ¢ is the blade chord.
The rotor side force is defined in terms of the rotor-side~force coefficient:

C

J = bek (k)7 L (51)
where
\ Jd 3 3 1 L
('y = .-2_ [Q b]\ - ‘:j asny + 4 il-lb]FU - aoajuz + 6 a4,

t
N
o~
—

3 | -
" pa, - i-bl -5 b1)00.7‘] (52)

This last equation is from reference 4 and was used on the CH-53.

The rotor forces are transformed from control axes to body axes by using the
transposes of the matrices in equations (45). First transform control to shaft axes:
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Then transform from shaft axes to body axes:
o | ) t
F, co, S6.S¢, S0Co, Fxg
Fy = 0 C¢s -S¢s Fys (54) ’ 1
F, -s8, €O So . COCo | \Fzg
m m

The rotor cyclic controls enter the main rctor model through thé cyclic flapping
angles. From reference 4, these angles in shaft axes are given by:

[ S

+ s (55)

out the hub are generated by the flapping

Pure pitching and rolling moments ab
enerated by the engine torque. In shaft axes

=" hinge offsets. A pure yawing moment is g
these pure moments are given by (ref. 4):

LS bls 0

= 2 )
MS = 0.5 e m | 8 + 0 (56)
Ns 0 Qe

where e 1is the flapping hinge offset, my is the blade mass moment, and Qg is

- the engine torque.

he main rotor in body axes result from the pure moments

The total moments of t
ting through the coordinates of the

h (converted to body axes) plus the rotor forces ac
rotor hub relative to the center of gravity:

, L cu,  S6,8¢, $0.Co | /Lg 0 -z, yh} «
3
: M= 0 Cog -S¢, | Mo+ o2y 0 ’Xh[ Fy (57)
o . , \
o -9 by S 1] & -
_ N i, ChSe, Cn Gl N, I, X, 0 ‘ F A

where Xp, Yhs and 2y are the coordinates of the rotor hub relative to the center of

gravity.

The main-rotor angular acceleration i found by summing the torques at the hub:

= (Q - Q, = Q ~ G/ (58)
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where Q¢ 1s the tail-rotor torque, G, 1is the gear ratlo between the main rotor and
tall rotor (G, > 1), and Im 1s the moment of inertia of the rotor blades and hub.

Tail Rotor Mudel

For the most part, the tail-rotor model calculates forces and moments in the same
manner as the main-rotor model. The tail rotor does not have cyclic-control angle
commands. The tail rotor does, however, have a §,; hinge, which has the effect of
increasing the stiffness and natural frequency of tail-rotor flapping.

The equation for tail-rotor pitch from reference 4 is given by:

Got = Oct - aot

tan(s,) (59)
where 0.y 1is the commanded tail-rotor collective and 6, 1is the lag offset angle.
Notice that the tail-rotor pitch is coupled to the coning angle, ayt. Since equa-
tions (44) and (59) are now coupled, they should be solved simultaneously. Eliminat-
ing a,t between these two equations yields:

. 8., - (2%, + 2,0, )tan &, -
ot 1 + Z, tan §, )

where Z,, 7., and Z; are defined from equations (44) by:

Bop = ZyN\, F 2,00+ 2,0 (61)

Engine Model

The SH-3G uses two T38-GE-8F gas turbine engines operating together except, of
course, in the event of engine failure. Each engine has a gas-generator section pro-
viding compressed air for a {ree or power-turtine section. An engine governor con-
trols fuel flow to maintain constant power-turbine speed under changing loads. Fuel
flow primarily affects the gas-generator speed which controls the torque applied to
the power turbine.

The governor is limited in a complex way during erniine acceleration or decelera-
tion to avoid the following undesirable conditions: (1) turbine overtemperature,
(2) compressor stall, (3) overrich flameout, or (4) overlean flameout. These limits
are in direct opposition to obtaining maximum power and immediate response. The net
result to the pilot is: ". . . engine response to new power or speed settings is not
instantaneous: a few seconds must be allowed for the engine to stabilize at the new

condition" (ref. 11, p. 1-10).

A very important engine characteristic to simulate is this delay to sudden
changes in the power required. A simple and effective way to model the engine is as
a torque device regulating main rotor rpm. The main rotor is then modeled approxi-
mately as a pure inertia and the controller is an application of psecudo-derivative
feedbiack in a simple form (ref. 12).

Figure 10 shows a block diagram of the engine/governor model. As developed in
reforence 12, the characteristic equation is:
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i Ot 1 e ARPM
_O ? T\ Is 4
1 -
| kg
"y Figure 10.~ Engine and governor model. y
T 1
= d 2 =
z Is® + de + Ki 0 (62)
where d stands for derivative and i for integral.
E#l If equation (62) is critically damped, then the response to a step load. L.. is: J
= __Si_ —(Kd/zl)t \
X =g [1—<1+2I t)e (63)
i
»i This implies a characteristic time:
v = 2L (64)
. d 1
'éhf Now from reference 8, the inertia of the main rotor and hub is 10,190 slug—ft2 g
; or I = .067 ft-lb-sec/rpm. If 1 1is chosen as 1.5 sec to simulate the engine delay, i
- then Kq = 1423 ft-1b/rpm. Critical damping determines Kj as 474 ft-ib/rpm-sec.
The engine model is summarized by: %
ARPM = RPM - 203.3 |
| Jrem = [rem + crem o« b1 (65) <
B Q = K, IRPM + K (ARPH) :
' 1
oy where
s
s ; ARPM  deviation of main-rotor rpm from the nominal of 203.3 i
W J&PM integral of rpm error i
by
DT cycletime
Qo engine torque
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Control System and Rigging

The SH-3G flight-control-system model conslsts of rigging Information, the
antomatle stabilization equipment (ASE) model, and the barometric altitude hold wode.
Rigging is the mechanlcal gain, including coupling, between the piiot's controls and
the motion of the swashplate, {.e¢., collective stick (in.) to collective pitch (dog) .
The automatic control system has four channels of stabilizatlon: the collective, the
pitch, the roll and the yaw channels. The SH-3G is attitude~-stabilized in pltch and
roll. The yaw channel is a heavy yaw damper plus heading hold control by microswitches
on the rudder pedals. The barometric altitude hold mode 1s controlled by a separate
switch from the ASE and drives the collective channel.

The rigging constants are taken for the most part from reference 13, the SH-3G
maintenance manual. The ASE is taken chiefly from reference 8, the Navy trainer math
model with some clarification from reference 11, the Navy flight manual.

The SH-3G has four pilot controls: collective stick, lateral stick, longitudinal
stick, and rudder pedals which control the main rotor collective pitch, the lateral
flapping angle, the longitudinal flapping angle, and the tail rotor collective,
respectively.

Each pilot control has physical travel limits as detailed in table 1. Each con-
trolled parameter, i.e., tail-rotor collective, also has physical limits as shown in
table 2.

TABLE 1.- PHYSICAL LIMITS OF THE PILOT's CONTROLS (in.)

Control Lower limit | Upper limit | Sign convention
Collective stick 0.00 7.46 + UP
Lateral cyclic stick ~-7.00 7.00 + RIGHT
Longitudinal cyclic stick ~-7.54 6.46 + AFT
Rotary rudder pedals -3.25 3.25 + NOSE RIGHT

TABLE 2.- PHYSICAL LIMITS OF THE MAIN ROTOR AND TAIL ROTOR (deg)

Rotor parameter Lewer limit | Upper limit | Sign convention
Main rotor collective pitch 8.10 19.50 + UP
Lateral flapping angle -9,10 6.90 + RIGHT
Longitudinal flapping angle -15.35 10.15 + FWD
Tail rotor collective pitch -6.50 25.00 + NOSE LEFT

i,

Py
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The form of the rigging equations are shown below:

]

0

o = 0, t KX, + ASE

>
-
)

= Klaxla Cy, - Kloxlo Swo + K —cxc + ASE

8 la la
(66)
B1s = Klaxla SY, + Kloxlo Cwo + Klo-cxc + ASE10
0ot = eot,o + Ktxt + Kt—cxc + ASEt

where Xcs X1as X1o0» and Xy are the collective stick, the lateral cyclic-stick, the
longitudinal cyclic-stick, and the rudder-pedal positions, respectively, in inches.
Note the coupling between collective and the other three controls. The cyclic control
phase angle Vy,, resulting from the rotor hinge offset, has been calculated by equa-
tions in appendix H of reference l4. The rigging constants are shown in table 3.

Each of the ASE components in equations (66) are limited to 10% control authority
as shown in table 4:

TABLE 3.- RIGGING

CONSTANTS TABLE 4.~ ASE AUTHORITY
Constant | Value Units Channel Limits, deg|Symbol
Yy 2.72 deg Collective t1.14 ASE,
€q,0 8.10 deg Lateral +1.60 ASEjg
80t .0 9.25 deg Longitudinal +2.55 ASEjlo
o 1.528 | deg/in. Yaw $3.25 ASE,
K1ia 1.143 | deg/in.
Kio -1.821 | deg/in.
Ky ~4.846 | deg/in.
Kc-1a -0.1475 | deg/in.
Ke-1o0 -0.3485 | deg/in.
Koot 1.135 | deg/in.

The control system equations are shown below:

ASE, =[Gy (h = by o) + G X ISpan5ase W
G, X S
. la ' la ase
ASE = y P+ G, ¢ >
] (
a p ¢ Tx145 + 1 T1a5 + 1
g , (67)
20 . .. Aase
ASE) = (Gy0 + GoQ) T3 5
lo
ASE. = Gk + G, (v - wref?
“t 7.8 + 1
t
/
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where
‘bah barometric altitude hold switeh (1 = on)
Sase automatic stabilization switch (1 = on)
href barometric altitude refercnce: sct when the barometric altitude hold switch is
on

Txlalea’Tlo’Tt time constants for first order filters

wref heading reference: set when feet off the rudder padals
P,R body axls and yaw rates, respectively
s Laplace Transform variable

The control system gains and time constants are shown in table 5:

.

TABLE 5.- CONTROL SYSTEM GAINS
AND TIME CONSTANTS

Constant Value Units
TX1a 0.8 sec
Tla .625 sec
T .625 sec
lo
T¢ .3125 sec
Ge . 1430 | deg/in.
Gbah -.01238 dES/ft
Gy -.1006 | deg/deg
Gy -.1187 | deg/(deg/sec)
lea 1.515 deg/in.
Go .2401 | deg/deg
GQ .2593 | deg/(deg/sec)
1o -.4504 | deg/in.
GRr .2428 | deg/(deg/sec)
¢ 1.3 deg/deg
q}

The lateral and longitudinal channels are filtered to prevent sharp transients
when the ASE is switched on.

The actuator dynamics have been neglected in the contro) model because of the
relatively short time constants involved (<0.2 sec).

TRIM METHOD

The trim algorithm used is adapted from BQUIET, a general trimming subroutine for
simulations at NASA Ames and documented in reference 15. BQUIET nulls six states with
six or less controls by: (1) finding perturbations in the six states for each
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control, (2) extrapolating lincarly to find a new control vector which will minimize
the state vector in the least-squares scnse, and (3) iterating until the staces are
within some tolerance of zero. Recognizing ghat the math model to be trimmed may be
highly nonlinear, (2) 1s modified by a "gradient gain'" of 0.5, i.e., the extrapolation
is only carried out half way. This damps oscillations about the solution and can
prevent dlvergence.

The BQUIET algorithm has been simplified and tailored for the SH-3G simvrlatilon.
This required initializing the program properly between perturbations, choosing the
controls and states, and making certain improvements in the details of the algorithm.

Trim Tnitialization

The SH-3C trim algorithm requires an estimate of the partial derivative of each
state with respect to each control on every iteration. The partials are found by
choosing a reference control vector, evaluating the corresponding reference state
vector, disturbing each control in turn by a small percentage of its travel, and
evaluating the change in the state vector from the reference. The state vector 1is
evaluated by setting initial conditions of the math model (including the controls),
allowing the model to "fly" for two shortened cycles, and observing the states. The
trim cycle time is chosen very short so that integrals present in the math model will
effectively not operate in trim mode, avoiding the need for special loops around each
integrator in trim. Filters, however, must be set to their steady-state-gain value
while trimming or they will be unaffected by changes in the confrols.

Ordinarily, the linear accelerations along the body axes and the angular accel-
erations about the body axes are chosen as states to be "trimmed.' All position, . ..
velocity, attitude, and angular velocity variables must therefore be set at the
desired trim values before each pass through the math model to determine the acceler-
ations. Since, in this math model, two of the controls are attitude variables, this
initialization must be recalculated before every pass.

The initial velocities and attitudes.need to be specified in bedy axes as well
as in inertial axes. For the convenience of the researcher, sideslip angle, flight~-
path angle, the equivalent velocity (knots), and the wind vector should be specifia-
ble. The bank angle and angle of attack are appropriate control variables and are,
therefore, also specified. The problem may be stated formally as: given: o, B, Yy,
Yhe W, Vg, ¢, find: Vb, V, 9, . See appendix A for the solution.

In addition, the model should be trimmable in hover, rearward flight, vertical
climb and descent, and sideward flight. These problems are also addressed in
appendix A.

Trim States and Controls

The classical Newton's method of finding the zeroes of a function conslsts of
finding the slope of the function at a trial point, extrapolating linearly to zero,
evaluating the function at the new trial point, and repeating. Tor this application,
this method 1s extended to many dimensions and the extent of extrapolation is con-
trolled by a "gradient” gain.

The original algorithm from BQUIET assumes an overdetermined set of linecar equa-
tions, i.e., fewer controls than states. To avoid the possibility of uncontrollable
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states and to simplify the computation, the present trim method insists on as many
controls as states. This results in a square matria of partial derivatives of the

states with respect to the controls. Mathematically:

oX

X = Ju where J,, = =
ij Ju
3
The SH-3G math model originally trimmed six states consisting of the Iin ar

accelerations along the body axes and the angular accelerations about the -body axes.
The six controls were: the initial angle of attack, the inltial bank angle, longi~
tudinal cyclic stick, lateral cyclic stick, rotary rudder-pedal position, and collec-
tive stick. Trimming improved dramatically with the addition of the main-rotor angu- %
lar acceleration as a seventh state and the initial value of the engine model filter

as a seventh control.

A trim iteration, then, contains eight passes through the math model. Each of
the first seven passes fills one column of the square seven by seven matrix of
partial derivatives, the Jacobian. Each column of the Jacobian corresponds to per- 3
; turbations in the states due to a 0.01% of travel change in one control. After the ]
- seventh pass, the Jacobian is inverted and muitiplied by the current reference state
E times the gradient gain to produce a new reference control vector. The eighth pass
through the math model determines the new reference state vector which should be i
closer to trim. If the states are less than some trim criteria, the process is :
stopped. Mathematically: 1

Su=-GJ"'X ; until |X.| <e;3 0<G <1

Trim Algorithm Improvements

= - Three minor improvements have been made in the BQUIET algorithm. The improve-
ments involve the limits on control changes, control restrictions when near the
boundaries of their travel, and variations in the gradient gain. With these improve-
ments the final math model trims at any airspeed from -30 knots to 135 knots and is
fairly inscnsitive to the initial control guess.

Some 1limit must be placed on the allowable change in each control, otherwise the
trim process may converge very slowly or not at all. The SH-3G %rim evaluates the
new proposed change in the control vector, finds the control with the largest change
as a percentage of its travel, limits this control to 10%, and re-scales the other
controls to preserve the direction of the new control vector.

1f a control is allowed to exceed its travel, highly nonlinear response to per-
turbations is likely because of physical limits and mechanical stops modeled. The 4
SH~3G trim, after limiting the change in the control vector as above, makes a further
| check to see if any control would exceed its travel. If so, that control is limited
o to half the remaining travel and the control change vector is re-scaled. This is
o similar to what happens in American football when a 15 yard penalty is called against
the offense and less than that remains to the goal line. This allows trimming arbi-
trarily close to the control limits.

. The gradient gain, mentioned earlier, is a measure of the extent of extrapolation

of the Jacobian matrix calculated on each iteration in trim. The ad hoc value for
the gradient gain used in BQUIET is 0.5. Occasionally, this value is too large,
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causlng orceLllatlons and even dlvergence.  The oselllations are ovident by sign
changes In the dtates after an Lteration, go an algorithm uning this fact has heen
dovised.  Basleally, dbere are any slpn changes after an fLteration, the gradient
galn Lo reduced; Lf there are no sign changes the gradlent galn is {increasced.  This
reducos osefllations at the beglnning of trim and speeds up the convergence at the end
near the solution,

MODEL VALIDATTON

The SU-3G math model valildatlion {s a comparison to Navy f1ight-test data col-
lTected to validate thelr own trainer simulation of the $H-3H (ref. 5). Various
trimmed control positions and time histories were sclected to check the SH-3G math
model fidelity hoth statlcally and dynamically.

Static Cheeks

Engine torques and trimmed control positions are validated for airspeeds varying
from =30 knots to +135 knots. Trimmed control positions are also checked for sideslip
angles varying from -25° to 425° at 70 knots nominal airspeed. Gencral flight condi-
tions valtdated were from 16,000~ to 20,000-1b gross weight and sea level to 2,000 ft
altitude. The results are presented in figures 11 to 15,

Figure 11 shows engine torque versus airspeed for level forvard flight {rom
40 knots to 135 knots. A comparison between the math model and the flight data is
shown for the medium gross weight of 17,764 1b. For airspeeds between 70 and

2500
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-
5 2000 e — MATH MODEL /
2
@
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& 1500
L4
o
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w
2
< 1000
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500 — - 1 J

0 . J A i 1 1 1 L
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TRUE AIRSPEED, knots

Figure 1. Level tlipht performance.
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1200 knots the torques are almost ddentical, but the math model fs optimistically Tow
betow 70 knots and above 120 knots, At 40 knots the diserepancy 1s largest, probahly
because of a mlsmateh fn blade profile drag.

Low speed and hover performance is shown In flgure 12, Indlcated torque for
afrspeeds from 30 knots aft or rearward to 40 knots forward Is plotted for both the
math model and the flight test.  As can be scen, the flight data are somewhat scat-
tered, 1t does appear, however, that the math model Is a few percent low especially
in hover and rearward light.

Flgures 13(a) and 13(b) compare the trimmed control positions for airspeeds from
30 knots to 130 knots In forward flight. The sideslip angle has been matched to the
flight=~test data for cach airspeed.

The collective position shows good agreement between flight test and math model.
The minimum collectlve positlion falls at 60 knots for the math model, which may be
low depending on how the scatter in the flight data 1is read. This would explain,
however, why the math model collective positions are high above 60 knots and low
below 60 knots, {.e., & better match might be obtained by shifting the math model
curve to the right, corresponding to an increase in induced power and a decrease in
flat-plate drag power.

The lateral and longitudinal cyclic positions of the math model agree fairly well
with the flight-test data, not varying more than about 7%. The longitudinal sensitiv-
ity of the math model is slightly higher than the flight data. The math model lateral
cyciie shows a decreasing trond while the flight data increasce, although the downward
curvature of the two curves is similar,
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Figure 13.- Forward f1ight trimmed control positions.
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Figure 13.- Concluded.

The math model trimmed pedal position shows the correct trend but the wrong
magnitude; being low by as much as 10%. This corresponds to a pedal displacement of
5/8 of an inch, so it is questionable whether a pilot would notice the discrepancy.

The pitch and roll attitudes show the correct trend. The trimmed roll attitudes :
are virtually indistinguishable between the math model and flight data; the pitch ;
attitudes are a few degrees low.

» Figures l4(a) and (b) show the low speed and hover trimmed-control positions.

- Note that figures 13 and 14 are not comparable because of the large variation in gross
weight. The effect of this can be seen in the collective position at 40 knots. In
figures 13 the collective position is about 607 corresponding to the gross weight of
19,017 1b as opposed to about 50% and 17,622 1b in figures 14.

Again there is good agreement between the math model and flight data for the
collective position and the roll and pitch attitudes. The lateral and longitudinal
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Figure 14.- Low speed trimmed control positions.
§ |

cvelie posttions also show the correet tronds and do not difter from the flight data
by more than about 770 The longitudinal sensitivity of the math model is now less
than the tlight data in contrast to Pigures 173, This ts probably due to stipht dif-
Forences fn conter of pravity position which is fixed in the math model.

The math model Crimmed pedal position Is apain low compared to the flight data
although the trend appears correct. The pedal position is probably about 5% low on
averape as it owas in tijpures 13, This error is within reason, as the SH-3C can bhe

adjusted mechanically by as much as 105,

10
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Trimmed control positions versus sideslip are prosented in figures 15@) and (b).
The math model piteh attitude and pedal position apree well with the flight=-test data,
The collective position and roll attitudes apree also tor right sideslips and hover,
N but not left sfdeslips.  The larpe nepative roll angles of the math model are bal-
‘ anced by incercases in the colleetive st fek position, over the flight-test data,  The
¢ large nepative trim roll angles ot the math model are probably due to inaccuracies
in the tusclage rotling moment due to stdeslip (figs. 15 and (b)),
a The math models lonpitudinal trimmed position shews the wrong trend though

B

roughly the right amapnitude, Flils can be explained by possible inaccuracies fn the
wind-tunnel data tor pitching moment due to sideslip.
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Figure 15.- Static lateral-directional stability.

Overall, the SH=3¢ math model agrees very well with flight data in performance
and trimmed control positions throughout the airspeed range of the helicopter.

Dynamic Checks

The dynamic validation consists of a comparison with flight-test data for a
I in. step in aft cyclic, a 1 in. step in right cyelic, a 1 in. step in right pedal,

and a 20% torque increase (collective step) at a trim airspeed of 70 knots.

Nominal

flight conditions were 19,000-1h gross weight, 2,000 ft pressure altitude, and




|

oo

PA  =2000 ft O FLIGHT DATA T
OAT = 22°C — — MATH MODEL |
75~ GW =16,267 Ib
\
70\
\\
§,_‘ 65 - \
ERe \
D E = 60 N |
- R N
=0 N
8&. 55 i~ AN
501 © O~ 07 o g
0] O]
45 1 A 1 1 1 1 J] 1 1 ]
55
F ”’_,——"‘
- _ 50| -
w5 & g5t el © 0 0
5% -5 © ©
=7 49 Q-7
//
35 i 1 i 1 1 1 I A 1 J
-
= 5
ad- (9 g
e R TN — -
E o< 50 o —
O ——— e Oy T T
& w1 . . P 0 00 .o,
~ 225 -15 -5 5 15 25
SIDESLIP, deg
b) LT RT

Figure 15.- Concluded.

standard temperature. In each case the pitch, roll, and yaw attitudes and pitch,
roll, and yaw rates are examined. The results are presented in figures 16 to 19.

Figure 16 compares flight test data for a 1 in. aft cyclic step with the math
model response for the same 1 in. cyclic step. Both the pitch rate and pitch atti-
tudes are well modeled with approximately the right shape and amplitude. The roll
and yaw parameters show the correct trend toward the end of the run and the math
model is lightly coupled as is the actual helicopter.

A 1 in. right cyclic step is shown in ligure 17. As can be seen, the shape in
roll and roll attitude are correct and the magnitude of the roll attitude is approxi-
mately correct. The roll ratoe magnitude, however, is low for the math model by a
factor of 2, reaching 20°/sec in the flight data and only 10°/sec for the math model.
The effect of this can be seen in the roll response! the math model requires 3 sec
to reach maximum attitude, while the flight data show only about 2 sec to reach
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Figure 16.- Oae inch aft cyclic step.

maximum attitude change. This discrepancy remains unexplained, as the math model
will not roll at 20°/sec with a 1 in. right cyclic step even with the control system
of f and only the main rotor natural damping operating.

The yaw attitude and yaw rate are well modeled showing the right shape and magni-
tude. The pitch attitude and rate is lightly coupled in both the math model and the
flight data.

Figure 18 shows the response to a 1 in. right pedal step. The yaw rate and yaw
attitude are very well modeled in shape and magnitude. The roll attitude is also
well modeled in shape and magnitude. The math model roll rate is about double the
flight-test data, reaching 77 /scc as opposed to 2°/sce in the flight data. The shape
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Figure 17.- On

of the math modeled, roll-rate curve

e inch right cyclic step.

is correct, however. The pitch attitude an

rate is very well modeled, although coupling is low.

A 20% torque increase or, effectively, a collective step is shown in figure 19,
well modeled with similar frequency and ampli-
model. The roll rate and roll attitudes of the

The yaw and yaw rate are particularly
tude between the flight data and math

mith model seem to be at a lower frequency and ampiitude than the flight data.

pitch and pitch rate show roughly the
model and flight-test dasa.

same amplitude and shape for both the math
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Figure 18.- One inch right pedal step.

Overall, the dynamic response in the primary axes, e.g.,

fongitudinal cyclic Input, is mode

response is modeled fairly well and is small in any event.

A wath model

CONCLUSTONS

pitch response for

led very well except for the roll rate. The coupled

of the Sikorsky SH=36G helicopter well-matched to flight-test data
and real-time simulation has been developed at Ames

and suitable for both of f-1ine

Research Center.

The model contains equations of motion, an

36
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Figure 19.- 207% torque increase.

Dryden wind model, the fuselage aerodynamics, nonlinear main-rotor and tail-rotor

models, a second-order engine model, and the SH-3G control system and rigging.

improved trim algorithm has also been developed.

1. The SH-3CG math model performance and trimmed-control positions for alrspeeds
from -30 to 135 knots agree well in trend and magnitude with Navy flight-test cata.

2. The math model dynamic response in attitude and rate to a 1 in. stcp in
longitudinal cyelie, lateral cyclic, or pedals agrees fairly well in the primary axis

with Navy filight-test data,
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3. The following ad hoe procedure has improved the statice trim accuracy of a
simplified helicopter math model:

a. Reduce the blade 1ift curve slope until the trimmed collective poaition
in hover matches flight data.

b. TInerease the induced power term in the main rotor torque equation until _ !
— engine torque in hover matcbes flight data. ‘
c. Increcase the fuselage flat-plate drag area until engine torque at 1
90 knots matches flight data.
K

T

4
]
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APPENDIX A
VELOCITY INITTIALIZATTON

Three veloclty vectors (alr, wind, and inertial velocity) need to be initialized
in two coordinate systems -- earth frame and body frame. This appendix contains a
description of the various coordinate systems used, the problem, the solution, and
some comments about special cases.

Earth axes relate to a triad of orthonormal vectors: R, £, D, where N points
north, E points east, and D points down into the earth. Body axes relate to
another triad of orthonormal vectors %, §, £, where % points out of the nose of an
aircraft, § points out of the right wing, and 2 points down perpendicular to the
plane of % and §. A useful set of coordinates for this initialization problem is
the u, m, n set or "path" coordinates; G points along the earth relative velocity,
fi 1is perpendicular to { and points right in the horizontal plame, and fi points
down perpendicular to the plane of 4 and m. These coordinate systems are summarized
by the three equations:

Ve = VNﬁ + VEE + VDﬁ "earth" coordinates
\7b =V x+ vyy +V,2  '"body" coordinates
Vp = VUG + V @+ Vnﬁ "path" coordinates

The trim initialization problem can be formally stated as follows:

Given:

Va the air velocity magnitude

WN wind component north

WE wind component east

WD wind component down

o angle of attack of the fuselage
B sideslip angle of the fuselage
Yy vertical flightpath angle

Yy, horizontal flightpath angle

¢ Euler roll angle

Find:

u x body axis component of the air velocity vector
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Y Vb y b53§‘ﬁx1S component of the air veloclty vector
wb z body axis component of the air veloclty vector 1
) VN north component of the earth relative veleclity vector ‘
VE east component of the earth relative velocity vector J
VD down component of the earth relative velocity vector '
VaN north component of the air velocity vector 1
VaE east component of the air velocity vector
VuD down component of the air velocity vector ]
0 Euler pitch angle g
P Euler heading angle 1

Read the subscripts as follows:

. a air h horizontal
b b body N north
%cv'v W wind E east
' v vertical D down

The solution proceeds as follows:

Lot

From the definition of angle-of-attack and sideslip calculate the body axis
components of airspeed.

uy = Va CBCu
Vb = Va SB
Wb = Va CBSu

From the definitinn of airspeed, wind, and ground speed:

V=V +W or

. ) (A1)
- ‘ Vua

1}

"
<
<<
+
=
£

Dot (Al) with 1, @, and n.

Vo=V (Ve ) W) = Vg kW (A2a)
0 =V (V_ +m) + W) = Vg + W (A2b)
0=V (¥ +n) +WGwea) = Vo +W (A2¢)
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Ry definlttion:

2 . oy? 2 Ly’ ",
VA= VR R VA VA (A3a)
W= W W o+ W (A3D)
u m n
Rewriting (A2b) and (A2c):
Vag, = W, (A2b)
Va = W, (A2¢)
Substituting (A2b) and (A2c) inte (A3a):
2 - g2 ? 2
V2= VR H W+ W (AL)
Solving (A3b) for (W3 + W) and substituting into (A4):
2 = oyt oo 7 _ o2
Vau = Va (W Wu)
Substituting into (A2a):
= Jy? - 2?7
\) sVa (W Wu) + Wu (A5)

Transforming a vector from earth coordinates &o path coordinates requires two pure
rotations.

wp = erthwe

where
LYV 0 —byv Lyh Syh 0
FYV =0 1 0 s l\h = |=Svy Cyh 0
Sy 0 Cy 0 0 1
Y v
Applying the above transformation:
Nu C\vbnh Cvayh -byvl wN
Nm = -5 h C I 0 WE
Y lvaC\h AR LYVI Yh

And the component of the wind parallel to the earth retative velocity vector is:

= Cy Gy, W Sy Y W= Sy
" NS \\N + ( 'VS " W " Sy v WD (A6)
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With the earth relative velocity magnitude from equation (A5) and the definition of
Yy and Yht

<l
1

N T v CYVCYh

VE =V CYVSYh
VD = V("SYV)
Equation (Al) now gives:
Vay N "N
Vag | =] Vg || ¥E
Vay vy Wy
From the definition of body axes:
Ub VaN
Vy | = T Tt | Vag
Wb VaD

where 6 and v are still unknown and T¢, Tgp, and Tw are defined in equation (1) of
the main text.

Separating 6 and y:

Y
rr\"l -1 =
Iy T¢ Vb
W
Multiplying out:
co 0 S6 Uy Cy Sy O] /Vay (A7a)
0 1 0 VbC¢ - WS¢ ) = |-Sv Cy 0 VaE (A7b)
-S89 0 ¢~ vbS¢ + wbc¢ C 0 1 'Var) (A7¢)
Note that (A7b) is independent of 9 and (A7c) is independent of :
Vi Co = W S = =Vay Su + Va. Cy (A7b)
—Ub St o+ (Vb So + wb Co)CH = VaD (A7¢)
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Kquations (A7b, and (A7c) can now be put in the form:
A 8in(q) = B cos(q) + C (A8)

This can be solved for q as followvs:

VAZ + B? [~—A—-——Sin(q) -— COS(Q)] =C
/A? + B? VA? + B2 '
or
C
cos(r)sin(q) - sin(r)cos(q) = ————
VA2 + B2

where tan(r) = B/A; then sin(g-r) = c//A? + BZ, Solving for ¢q and substituting
for r:

q = arctan(%) + arcsin(—S— (A9)
VAZ + B?,

Rewriting (A7b) in the form of (A8):

Vay SV = Vag C¥ + (W, Sé - V. T9) (A7b)
Applying (A9):
Va W, S¢ - V, Cé
yo= arctan(-g> + arcsin( b b ) (A10)
Vay Vag

where

vag = ]/vgN +Vag 3 Vay #0 and Va, > 0

Rewriting (A7¢) in the form of (A8):

U, SO = (vb S¢ + Wy CHp)CO - Vg (A7¢)

b D

Applying (A9):

V. Sh 4+ W Co -V, ’
C = arctan (~J1~—~TT—~EL~——) + arcsin| — D (A11)
b U7+ (V) 5o+ W )2

where Uy #0 and V_ - 0.

Note that for ¢ = ¢ = 0
Vag
. = arctan ng = 1,
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and:
~Vay W,
0 = aresin| -—————— | + arctan <ﬁ——) = Yy + a

7+ W b *
as required. Rearward flight 1s handled by adding 180° to B and vy,. This—implies i
o and Yy should be limited to +90°, This limitation results from the
definitions:

Va = TBTavb . ;

Vo= Try T ) ’

In words, the air-velocity direction is defined by two rotations (o and B8) from
body axes and the path-velocity vector is defined by two rotations (yy and yy) from
earth axes. To rotate the velocity vector to the opposite direction, the last rota-
tion angle (B or y,) must be used, instead of x or yp, or the resulting vector will
not, in general, point in the opposite direction.

Hover is handled by not allowing the total air velocity to equal zero exactly.
If the air-velocity magnitude is less than some small criterion, then the air velocity
is assigned the criterion value times the sign of the velocity. Mathematically:

If |va| <V ., then V_ =sign(V,) xV_

The method described in this appendix is valuable for solving other similar
problems. Particularly useful are the two "tricks" embodied in equations (A5) 1

and (A9). i
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SYMBOLS

Als’Bls lateral and longitudinal cyclic control angles in shaft axes

ASE, collective channe: automatic~control command i
ASE1a lateral channel automatic-control command

ASE10 longitudinal channel automatic-control command ’
ASE, yaw channel automatic-control command. . .. Ti
a blade 1ift curve slope, rad |
a' angle of tilting of the thrust vector due to 1lift

a, rotor coning angle l
a ¢ tail rotor blade coning angle

a,,b, lateral and longitudinal flapping angles in control axes 3
a; ,bls lateral and longitudinal flapping angles in shaft axes

B blade tip loss factor i
b number of blades |
C, «+ . C,, moment of inertia coefficients (eq. (12))

CFDo fuselate flat-plate drag area

4

CFDl fuselage drag-force coefficient due to local angle of attack

CFD2 fuselage drag-force coefficient due to local sideslip 5
CFL1 fuselage lift-force coefficient due to local angle of attack ’
CFL? fuselage 1ift-force coefficient due to sideslip

CFy fuselage side-force coefficient

CM; rolling-moment coefficient
CMm] pitching-moment coefficient due to local angle of attack ‘
CMmr pitching-moment coefficient due to sideslip ]
CMn yawing-moment coefficient
Cq torque coefficient, Q/; " :R®
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main rotor-thrust coefficient

rotor slde-force coefficient

rotor blade chord

fuselage drag force, (+ aft)

computer cycle time or integration step

rotor flapping-hinge offset

fuselage angle-of-attack correction for main rotor downwash
main rotor downwash .factor

fuselage aerodynamic force components
gravitational force

force in earth axes

force in body axes

force in shaft axes

gradient gain on the Jacobian matrix

control gain on yaw rate

control gain on altitude error

control gain on collective stick position

control gain on roll rate

gear ratio between the main and tail rotors, 6.28937
control gain on lateral cyclic-stick position
control gain on longitudinal cyclic-stick position
control gain on pitch angle

control gain on bank angle

control gain on heading error

rotor drag force

altitude above sea level

control reference altitude, set when the altitude hold switch is
turned on
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I
Im
Ixx’lyy'Izz
J

Ke

Kc--la

Kc—lo

L,M,N
LO

LAT

LON

P,Q,R

P, T

effective inertia of the main rotor, -Iy

moment of 1ne§tia of the main rotor blades and hub

body axls moments of inertia

rotor side force

rigging constant- between collective stick and collective pitch
coupling between collective stick and lateral swashplate angle
coupling between collective stick and longitudinal swashplate angle
coupling between collective stick and.tail-rotor pitch

engine governor constant. affecting the derivative of Arpm in the
characteristic equation

engine governor gain on the time integral of rpm error

rigging constant between lateral cyclic stick and lateral cyclic-control
angle

rigging constant between longitudinal cyclic stick and longitudinal
cyclic~control angle

thrust correction for rotor spanwise flow not accurately modeled
thrust correction for nonuniform flow

rigging constant between pedal position and tail-rotor collective
rolling, pitching, and yawing moments in body axes

magnitude of a generalized step load on the engine

latitude of the helicopter

longitude of the helicopter

fuselage 1ift force (+ up)

pure rolling, pitching, and yawing moments in shaft axes

Mach number

mass of the helicopter

mass moment of a rotor blade

count of current time step

body axes roll, pitch, and yaw rates

free-stream temperature and pressure
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control axes roll, pitch, and yaw rates

shaft axes roll, piteh, and yaw rates

engine torque

main-rotor torque

tall-rotor torque

dynamic pressure

compressible dynamic pressure, as measured by a pitot static tube
rotor disc radius

radius of the earth, 20,898,908 ft

automatic stabilization equipment switch (1 = On)
baromecric altitude hold switch (1 = On)

Laplace transform variable

rotor thrust

fuselage aerodynamic moments in body axes

ratio of standard temperature and pressure at altitude to sea-level
values

total temperature and pressure ratios

total temperature and pressure

airspeed in body axes

airspeed in control axes

alrspeed in shaft axes

earth relative velocity magnitude

alrspeed magnitude

ground speed

airspeed in earth axes

airspeed in path axes

calibrated airspeed corrected for the effects of compressibility

equivalent airspeed at sea-level density
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carth relative velocity in earth axes

wind veloclty In earth axes
wind velocity in path axes
collective stick position
coordinates of the rotor hub relative to the CC in body axes

lateral cyclic~stick position

longitudinal cyclic~stick position

tail rotor pedal position

fuselage side force (+ right)

rotor constants defined by equation (61)

fuselage centerlinc angle of attack

fuselage centerline angle of attack corrected for main rotor downwash
average rotor-blade angle of attack in hover

sideslip angle of fuselage (+ nose left of velocity vector)

rotor orientation angle

rotor lock number

horizontal flightpath angle (eq. (5))

vertical flightpath angle (eq. (5))

main-rotor rpm deviation from nominal (203.3)

temperature above standard conditions

rotor-blade profile-drag coefficient

coeff’ .ients of the Bailey profile-drag coefficient (eq. (49))
tail-rotor §, hinge phase angle

rotor collective pitch angle

tall rotor collective pitch angle

lowest main-rotor collective pitch

neutral tail-rotor collective pitch with collective in full low position

rotor blade twist from root to tip
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blade pitch at 75% of the cotor-disc radlus

tail-rotor commanded collective pitch

maln-rotor inflow ratio

main-rotor tip-speed ratilo

induced inflow ratio

atmospheric density

rotor solidity ratio

lateral chamnel filter-time constant

yaw channel filter-time constant

lateral stick filter-time constant

longitudinal stick filter-time constant

lag time constant for changes in the inflow ratio
roll, pitch, and yaw Euler angles

rotor-shaft roll and pitch relative to the (-Z) body axis
rotor flapping phase angle

reference heading

main rotor angular rate

angular rate of the earth, 0.000072722 rad/sec

unit vectors along earth axes
unit vectors along path axes
unit vectors along body axes
state and control vectors for trimming

trim-ervor criteria for stopping the trim process

Jacobian matrix-matrix of partial derivatives

rotation matrices for locating the ailrspeed vector relative to body

axes
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TyysTyy, rotatlon matrices for locating the carth relative vector on the earth
T¢'T0’T¢ rotatlon matrices for converting earth axes to body axes
Subscripts
b body axes
c control axes (aligned to the axis of no feathering)
e earth axes
m main rotor parameters
P path coordinates (see appendix A)
s shaft axes (aligned to .he rotor shaft axis)
t tail-rotor parameters
) time derivative
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